
Localization Processes and Best Practices for Web Developers and Translators

With an Evaluation of Localize, a Translation Project Management Application

Kimberly Hawthorne

FTRA-636

Informatique et traduction

Concordia University

Département d'études françaises

April 14, 2020

1

Though English has long been the dominant language on the Web, the ratio of English-speaking

users has been steadily declining since 2000 as the world becomes more and more connected

(Internet World Stats 2020). Such diversification of users has led to an increase in the number of

languages on the Web, and with that, an increased need for localization. While its definition remains

debated in the field of translation studies, localization is generally accepted to be “the process of

adapting a product or content to a specific locale or market,” which includes but is not limited to

translation of textual content (Globalization and Localization Association, n.d.). Many different

products—including software, video games and multimedia content—may require localization, but

this research will focus on websites (Jiménez-Crespo 2013, 28). Localization processes and best

practices will be examined from the perspective of Web developers and translators, and with these

considerations in mind, an online localization management tool called Localize will be evaluated.1

The process of localization

According to Miguel Jiménez-Crespo (2013, 29-31) in his study of Web localization, the

localization process can be broken down into three main stages: project preparation, translation and

quality assurance (QA). A successful Web localization project requires careful planning and

involves professionals from a multitude of disciplines, including project managers, copywriters,

translators, programmers, user experience (UX) designers and QA specialists (Jiménez-Crespo

2013, 29). While localization mainly consists of textual language transfer, several other factors must

be considered at every stage of the process. The first two—project preparation and translation—are

discussed below.

1 https://localizejs.com/

2

Language transfer and cultural adaptation

Perhaps most obviously, text present in website interfaces needs to be translated in a localization

project. Both copywriters and programmers should be cognizant of differing grammatical structures

among languages when preparing text segments for localization. Beyond language transfer, a

website may also require cultural adaptations. If the goal of localization is “to produce products that

are received by target users as locally made,” elements like date formats, units of measurement and

currencies should be adjusted to fit the target locale (Jiménez-Crespo 2013, 14; MDN Web Docs

2020).

In preparing text for localization, programmers should strive for neutrality, making no

assumptions about the target language. The need for neutrality is apparent when considering

differences in pluralization and gendered nouns among languages—especially when dealing with

dynamic data. According to the Mozilla Developer Network documentation (2020), “if a string will

contain a placeholder [for dynamic text], always add the placeholder to the string to allow the

localizer to change the word order if necessary.” At first glance, developers may be tempted to

extract placeholders from translation segments and concatenate translated strings, in an effort to

simplify the codebase and save time in translation. However, such an approach can become

unwieldy or even impossible when supporting multiple languages. Take the following example, in

which the country changes based on locale:

shipping-information-label: {

en-CA: "Shipping information for ${country-adjective} addresses",

fr-CA: "Informations sur la livraison pour les adresses

${country-adjective}",

fr-FR: "Informations sur la livraison pour les adresses

${country-adjective}"

},

country-adjective: {

en-CA: "Canadian",

fr-CA: "canadiennes", // ERROR: assumes gender and pluralization

3

fr-FR: "françaises" // ERROR: assumes gender and pluralization

}

With this setup, the English source segment (“Shipping information for

${country-adjective} addresses”) would only need to be translated into French once, as the

adjectives canadiennes and françaises could be programmatically updated to match the selected

locale. In French, the country adjectives would necessarily be translated and stored in the feminine

and plural forms, to agree with the noun adresses. The impetus behind such an approach would be

to reuse the “country-adjective” variable in other segments; however, since the French adjectives

are “hard-coded” to be both feminine and plural, they run the risk of rendering grammatically

incorrect content in other contexts. Thus, string concatenation of dynamic placeholder text makes

assumptions, often incorrect, about target grammatical structures and should be avoided. Instead,

translation segments should comprise complete phrases, allowing translation professionals to handle

all grammar logic.

shipping-information-label: {

en-CA: "Shipping information for Canadian addresses",

fr-CA: "Informations sur la livraison pour les adresses

canadiennes",

fr-FR: "Informations sur la livraison pour les adresses françaises"

}

While Jiménez-Crespo (2013, 30) indicates that translators should be provided with notes,

sample folder structures and even a localization environment of the website, such resources are

unfortunately not always available. As such, developers should strive to provide translators as much

contextual information as possible when preparing text segments for localization.

4

User interfaces

Localization requires not only programmatic changes, but also UX considerations. Ideal font sizes

and text expansion may differ between languages and impact designs, requiring flexible or even

completely different interfaces. For example, font sizes may need to be increased for websites that

support languages with complex characters, such as Korean and Japanese (W3C Internationalization

2016a). Additionally, UX designers would need to be heavily involved in localizing websites that

support languages with various text directions, such as a multilingual website that supports both

English (left to right) and Arabic (right to left) (W3C Internationalization. 2016b).

Accessibility

Finally, accessibility labels and elements must also be localized to ensure that all users in the target

locale can access the website, regardless of ability. This is especially important when localizing

websites that are accessible to visually impaired users, many of whom navigate the Web using

screen-reader software. According to the W3C Web Accessibility Initiative (2017), screen readers

convert visual content—including text, icons, images and the state of interactive elements—into a

communicative form that the user can consume, such as speech or Braille. To ensure compatibility

with screen readers, developers make use of ARIA attributes. These attributes can be added to

HTML tags to provide additional context for visually impaired users via “roles and states that

describe the behavior of most familiar UI widgets” (MDN Web Docs 2019).

Presumably, a website with accessible components aims to be available to all of its potential

users. Thus, if that website supports multiple languages, its accessibility functionality should also

be included in a comprehensive localization project. As previously mentioned, translators should be

provided additional context about these accessibility segments. Since ARIA content is visually

hidden, the length of the translated text will not affect the website’s layout; therefore, translators

5

should know to prioritize clarity in these instances (MDN Web Docs 2020). Such information can

be conveyed via localization notes directly in the translation files.

delivery-options-aria-label: {

en-CA: "Click here for delivery options" // LOCALIZATION NOTE:

used for accessibility and is visually hidden

}

Evaluation of Localize JS

As demonstrated above, professionals involved in localization must consider several factors in

addition to language transfer. With an increased demand for Web localization, many software

products have been developed claiming to streamline the localization process, including Localize,

which is a cloud-based translation management and delivery platform. Localize offers a wide range

of features to a multitude of user types, including project managers, translators, reviewers and

programmers. The application is quite rich in features, with support for machine translation,

reporting, glossaries, and style guides; however, it seems to excel simply as a project management

platform for localization projects.

Localize was evaluated by the author via two separate test projects. In the first project, text

from the first two chapters of Antoine de Saint-Exupéry’s Le Petit Prince was published to a test

website. Localize’s content delivery feature was used to fetch untranslated segments directly from2

the website, as well as publish the approved translations. The second project followed a more

traditional translation workflow in which text segments were imported into Localize using a JSON

file containing test data. Findings from both projects are described below.3

3 https://github.com/kimberlyhawthorne/ftra636/blob/master/AddToCart.json
2 https://kimberlyhawthorne.github.io/ftra636/

6

Project management

Out of the box, Localize is an easy-to-use translation project management platform with an intuitive

user interface. Administrators can easily create new translation projects, select multiple supported

languages and run reports on the project’s progress. They can also add users and lock down their

permissions based on role. For example, translators can be limited to accessing and editing

untranslated content, while revisers may be granted more freedom to not only translate, but also

approve suggested translations and maintain glossaries (see Figure 1).

Figure 1: User roles and permissions in Localize.

Translation segments can be loaded into Localize in one of three ways: via a data file, an

integration with a third-party tool or Localize’s content delivery feature. The first option is the most

traditional and, for complex websites such as e-commerce platforms, likely the best option. Localize

accepts many common file types, including JSON, CSV and XML (Localize 2020a). Alternatively,

Localize’s content delivery system is an interesting feature that enables Localize to crawl the client

website and extract all text content for translation. The text is automatically segmented based on

HTML structure and imported into Localize. Once translated, Localize can also deliver the final

7

content to the website and “listen” for changes, automatically loading new text into the application

for translation (Localize 2020b). With this feature, a translation project is essentially managed end

to end using Localize—though there exists a number of concerns with this approach.

Once imported, segments to be translated—termed “phrases” within the interface—are

loaded into a “Pending” tab. From here, project managers can submit phrases for machine

translation via Localize’s integrations with Google Translate, Microsoft Translate and Amazon

Translate. Alternatively, phrases can be assigned to human translators that have Localize accounts

or exported for translation outside of the application entirely. Regardless of method, the segments

move through a complete translation workflow, which includes in-progress, review and approval

stages (see Figure 2).

Figure 2: View of translation management workflow in Localize. Note that in this example, the imported French phrases that have yet

to be translated and are available under the “Pending” tab.

8

Data tagging and contextualization

To optimize communication between disciplines, Localize allows developers to add context and

additional information directly to text segments via a variety of means. First, labels can be applied

to any text segment, which not only provide additional context but also enable Localize users to

filter segments by label—a useful feature for projects with numerous text segments. Labels would

also be helpful in flagging visually hidden ARIA content or providing translators with information

about a text segment’s functionality, such as whether the content appears in a button or is simply

static. When labels aren’t sufficient, programmers can provide more specific information to any

segment via localization notes. These notes are easily added to any supported data file and will

appear in tandem with the corresponding phrase in the Localize user interface for easy reference

(see the first segment in Figure 3).

Perhaps most usefully, programmers can replace dynamic data with placeholder variable

tags. Translators could be trained on the relatively simple syntax of variable tags, ensuring that the

dynamic content within them doesn’t get translated. This is especially important for projects

leveraging Localize’s content delivery system: if all dynamic content—such as usernames or

product prices—is wrapped in variable tags, only static text will be available for translation. This

could result in significant time savings by eliminating repetitive text strings in which only dynamic

content differs (Localize 2020c) (see the second segment in Figure 3).

9

Figure 3: Labels, notes and variables for dynamic data. In the first segment, a UX concern is noted. The second contains a variable
for product name, which, without this variable tag, could be repeated for every product on the website, depending on import method.

{

"labels": ["accessibility", "visually hidden"],

"context": "Add localization notes here",

"translation": {

"Click to add <var productName>product</var> to cart": {}

}

}

Figure 4: Example JSON format for a text segment with labels, notes and dynamic data.

Finally, clients using the content delivery feature have the benefit of previewing translations

in the target website’s user interface using Localize’s in-site editor—essentially a

what-you-see-is-what-you-get tool (see Figure 5). The in-site editor not only provides translators

with real-world context for the segments they are translating, but also allows them to immediately

detect any obvious UX or design issues that may result from translated output. Indeed, project

managers could go so far as to add UX designers to Localize projects, enabling them to preview

translated websites and approve them from a visual design perspective before they are published.

10

Figure 5: View of Localize’s in-site editor

Enforcing consistency

Localize has a number of tools available to project managers, translators and developers to ensure

consistency in the localization process. When setting up a project, administrators can choose to add

a style guide, which will be visible to all users of the application. Additionally, translators and/or

terminology experts can create glossaries scoped to the project at hand. When translating segments

that contain terms in the glossary, the entry appears in the translation user interface (see Figures 6

and 7).

11

Figure 6: Adding terms and notes to a glossary.

Figure 7: Localize interface for translating a text segment. Note that the glossary term for serpent boas is provided.

Lastly, Localize provides a unique solution via its content delivery system for handling

singular and plural noun forms. Using a specific HTML tag, programmers can flag nouns as

potentially needing to be pluralized. Once imported into Localize, translators are given the option to

publish both singular and plural versions of the segment (see Figure 8). When the translations are

finally served to the target website, the appropriate translated form—either singular or plural—is

selected, depending on the integer defined in the HTML tag.

<p>You have <var pluralize="8">8</var> products in your cart</p>

12

Figure 8: View of functionality to add both singular and plural forms of nouns. In this example, the final sentence contains a pluralize
variable tag, and the word to be translated into singular and plural forms is jour(s).

Evaluation of Localize’s functionality

As detailed above, Localize offers project managers, translators and developers many

features—some more useful than others—to streamline the process of localizing a website. This

section will analyze the strengths and weaknesses of the tool.

Strengths

● Localize is generally easy to use, with an intuitive interface. Based on the author’s

experience, most project managers should be able to set up a project, add users with specific

permissions and manage workflow without much training. When further clarification is

needed, Localize provides thorough documentation.

● Importing and exporting data from Localize is simple, and the application supports many

commonly used data file formats. The expected data structure for each file type is also

clearly documented (Localize 2020a).

13

● The platform is not prescriptive from a workflow point of view, which means that teams can

use it in whatever manner best fits their needs. Localize’s content delivery feature manages

all aspects of data import and delivery, which may be a good option for smaller businesses,

bloggers or companies without access to Web developers.

When using human translators, translation can be completed directly in the Localize

application or the segments can be exported for external translation. In the latter scenario,

Localize would simply act as a translation-tracking application, kept up to date by

continuously importing both files that have yet to be translated and those that are already

completed. Admittedly, this doesn’t seem to be the best use of Localize; with its support for

glossaries, dynamic placeholders and detailed revision history, Localize is best suited to

managing translation workflows, with translations being completed directly in the

application.

● Localize integrates with three major machine translation systems—Google, Microsoft and

Amazon—to provide optional machine translations. Depending on a project’s needs, these

integrations could be leveraged to process raw translations, with human translators acting as

post editors.

● The Localize platform offers many options for providing additional context to text

segments, including labels, notes and style guides.

● Regardless of import method, Localize handles placeholders for dynamic content in an

intuitive way. From a programmatic perspective, integrating the dynamic variable tags is

simple and should have little to no impact on website performance.

● Localize easily handles projects with more than one target language.

14

Weaknesses

● Localize’s content delivery system is the source of all major concerns, though it’s quite

heavily promoted by the company. While the system’s ability to fetch data and segment it

based on HTML structure is indeed quite useful, there exist two major issues with this

approach from a programmatic perspective.

First, in order to register content with the delivery system, a script has to be added to

the website, after which each page of the website must be loaded. This is problematic for

single-page applications (SPA), which are becoming increasingly popular. A SPA is loaded

only once; all other interactions and navigation are handled on the front end using JavaScript

(Microsoft Docs 2019). Additionally, many SPA websites are heavily dynamic and tailored

to users. They rely on data coming from a server via an API, which itself might contain

textual content that requires localization. Without the ability to explicitly load all of these

experiences, it’s possible that Localize would never register them and, in turn, never

translate them. Conversely, Localize does offer an API integration; however, such a solution

would likely make no difference for the content delivery system and was outside the scope

of this research.

However, let’s assume that Localize is able to fetch all of a website’s textual content

for translation. In this scenario, the translated segments would be delivered back to the target

website on the client side—that is, the website will first load, then request the translated

content from Localize and finally display it. This can have serious implications for search

engine optimization (SEO), which is “a methodology of strategies, techniques and tactics

used to increase the amount of visitors (traffic) to a website by obtaining a high-ranking

placement in the search results page of a search engine” (Beal n.d.). Generally, website

content is crawled and indexed by search engines on the server; thus, with translations being

rendered only on the client, SEO may be heavily impacted for a website that uses Localize’s

15

content delivery system. This alone could be a dealbreaker for companies that rely heavily

on search engine results for traffic.

● Localize’s website mentions translation memories as a feature, but neither the user interface

nor the documentation indicate such support.

● Finally, Localize doesn’t support pluralization in imported text segments. Developers can

still wrap nouns to be pluralized in a variable—essentially marking them as dynamic

content—but Localize’s singular/plural functionality will not be available.

Conclusion

Web localization is, by nature, a complex process. It entails much more than language transfer, as

programmatic, design and accessibility concerns must also be considered. In general, Localize is a

solid localization management offering. Its principle weakness concerns the client-side content

delivery system and the programmatic implications of using it. However, Localize’s core

functionality—managing translations and localization workflow—would certainly enhance

communication between professionals in different disciplines and ensure better consistency in a

large-scale localization project. Indeed, as the Web continues to grow, so will the necessity for

solutions, like Localize, that streamline this process.

Bibliography

Beal, Vangie. “Search engine optimization.” Webopedia. Accessed April 13, 2020.
https://www.webopedia.com/TERM/S/SEO.html

De Sainte-Exupéry, Antoine. “Le Petit Prince.” 1945. Accessed on April 13, 2020.
http://lepetitprinceexupery.free.fr (Note that this data was used to publish a website to test
Localize)

Globalization and Localization Association. n.d. “What is Localization?” Accessed April 13,
2020. https://www.gala-global.org/industry/intro-language-industry/what-localization

Hawthorne, Kimberly. “The Intersection of Localization and Web Accessibility for Visually
Impaired Users.” Paper submitted for FTRA-600 at Concordia University. December 3,
2019. Available on demand.

Internet World Stats. Last modified March 26, 2020. “Internet World Users By Language.”
Accessed April 12, 2020. https://www.internetworldstats.com/stats7.htm

Jiménez-Crespo, Miguel A. 2013. Translation and Web Localization. Abingdon, Oxon:
Routledge.

Localize. 2020a. “Getting Content Into Localize.” Last modified January 2020.
https://help.localizejs.com/docs/installation

Localize. 2020b. “How Translations Get to Your Website.” Last modified January 2020.
https://help.localizejs.com/docs/how-translations-get-to-your-website

Localize. 2020c. “Using HTML Syntax to Prepare Phrases.” Last modified January 2020.
https://help.localizejs.com/docs/setup-guide

MDN Web Docs. “An overview of accessible web applications and widgets.” Last modified
June 19, 2019.
https://developer.mozilla.org/en-US/docs/Web/Accessibility/An_overview_of_accessible_
web_applications_and_widgets

MDN Web Docs. “Localization content best practices.” Last modified February 18, 2020.
https://developer.mozilla.org/en-US/docs/Mozilla/Localization/Localization_content_best_
practices

Microsoft Docs. “Choose Between Traditional Web Apps and Single Page Apps (SPAs).”
December 4, 2019.

https://docs.microsoft.com/en-us/dotnet/architecture/modern-web-apps-azure/choose-betw
een-traditional-web-and-single-page-apps

W3C Internationalization. 2016a. “Text size in translation.” Last modified February 1, 2016.
https://www.w3.org/International/articles/article-text-size

W3C Internationalization. 2016b. “Internationalization techniques: Authoring HTML &
CSS.” Last modified January 28, 2016.
https://www.w3.org/International/techniques/authoring-html

W3C Web Accessibility Initiative. “Tools and Techniques.” Last modified May 15, 2017.
https://www.w3.org/WAI/people-use-web/tools-techniques/

